Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3β , 12β , 14α -Trihydroxypregnan-20-one

Hefang Shi and Yingxia Li*

Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China

Correspondence e-mail: liyx417@ouc.edu.cn

Received 30 March 2009; accepted 13 April 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.125; data-to-parameter ratio = 9.2.

The title compound, $C_{21}H_{34}O_4$, is a steriod of the pregnane family prepared by the sequential oxidation and reduction of 3β ,12 β -diacetoxy-20-ethylenedioxypregnan-14-ene. The conformations of the six-membered rings are close to chair forms, while the five-membered ring adopts an envelope conformation. All the rings are *trans*-fused and an intramolecular O– H···O hydrogen bond occurs. In the crystal structure, intermolecular O–H···O hydrogen bonds link the molecules into a two-dimensional network.

Related literature

For the synthesis, see: Templeton & Yan (1992); Fell & Heathcock (2002). For background on hecogenin, see: Ranu & Samanta (2003).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.729, T_{\rm max} = 0.97$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	
$wR(F^2) = 0.125$	
S = 1.01	
2194 reflections	
238 parameters	
1 restraint	

5569 measured reflections 2194 independent reflections 1930 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.107$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.28~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.24~e~{\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3\cdots O4^{i}$	0.81 (4)	2.19 (4)	2.916 (3)	150 (3)
O2−H2···O4	0.80 (4)	2.01 (4)	2.771 (3)	158 (3)
$O1-H1\cdots O2^{ii}$	0.88 (5)	2.05 (6)	2.928 (3)	170 (4)

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 30572245).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2940).

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fell, J. D. & Heathcock, C. H. (2002). J. Org. Chem. 67, 4742-4746.

Ranu, B. C. & Samanta, S. (2003). J. Org. Chem. 68, 7130-7132.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Templeton, J. F. & Yan, Y. (1992). Org. Prep. Proced. Int. 24, 159-163.

Acta Cryst. (2009). E65, o1102 [doi:10.1107/S1600536809013853]

3β , 12β , 14α -Trihydroxypregnan-20-one

H. Shi and Y. Li

Comment

The title compound was obtained by oxidation and reduction of the corresponding 3β , 12β -diacetoxypregnan-20-ethylenedioxy-14-ene, which was prepared from hecogenin (Fell & Heathcock, 2002; Ranu & Samanta, 2003). We have undertaken the X-ray crystal structure determination of (I) in order to establish its molecular conformation and relative stereochemistry.

The hydroxyl group at C12 and the acetyl group at C17 are beta-oriented respectively, whereas the hydroxyl group at C14 is alpha-oriented (Fig. 1). The conformation of the six-membered rings in both molecules are close to chair forms, while the five-membered ring adopts an envelope conformation. All rings in both molecules are *trans*-fused. The molecules of (I) are held together by an extensive O—H…O hydrogen-bonding two-dimensional network (Table 1, Fig. 2).

Experimental

The title compound was prepared according to the literature method (Fell & Heathcock, 2002; Templeton & Yan 1992). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature (m.p. 343–347 K).

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. The O-bond H atoms were located in a difference map and their positions were freely refined with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were fixed geometrically at ideal positions (C—H = 0.96–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-H atoms drawn at the 50% probability level.

Fig. 2. The molecular packing of (I) viewed down the *a* axis. Dashed lines indicate hydrogen bonds.

3β , 12β , 14α -Trihydroxypregnan-20-one

Crystal data	
C ₂₁ H ₃₄ O ₄	$F_{000} = 384$
$M_r = 350.48$	$D_{\rm x} = 1.249 {\rm Mg m}^{-3}$
Monoclinic, P21	Melting point: 431(2) K
Hall symbol: P 2yb	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 6.1364 (7) Å	Cell parameters from 2719 reflections
<i>b</i> = 12.1472 (13) Å	$\theta = 4.7 - 55.9^{\circ}$
<i>c</i> = 12.7593 (14) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 101.513 \ (2)^{\circ}$	T = 293 K
$V = 931.94 (18) \text{ Å}^3$	Prism, colourless
Z = 2	$0.50 \times 0.44 \times 0.32$ mm

Data collection

Bruker SMART CCD area-detector diffractometer	2194 independent reflections
Radiation source: fine-focus sealed tube	1930 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.107$
T = 293 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -7 \rightarrow 7$
$T_{\min} = 0.729, T_{\max} = 0.97$	$k = -15 \rightarrow 13$
5569 measured reflections	$l = -16 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.125$	$w = 1/[\sigma^2(F_o^2) + (0.0733P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
2194 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
238 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 01 0.0605 (6) 0.2262 (4) -0.0588(2)-0.28839(15)H10.152(7) -0.121(5)-0.292(3)0.091* O2 0.9924 (3) 0.22625 (16) 0.32210 (14) 0.0440 (4) H2 1.062 (6) 0.223(4)0.382(3)0.066* O3 0.7898 (3) -0.09548(15)0.33306(15) 0.0455 (5) H3 0.068* 0.767 (6) -0.146(4)0.371(3)04 0.0695 (7) 1.1201 (4) 0.2028(2)0.54187 (16) C1 0.5918 (4) 0.0590(2) 0.0439 (6) -0.04305(19)H1A 0.053* 0.6605 0.1311 -0.0317H1B 0.7099 0.0046 -0.03160.053* C2 0.4657 (5) 0.0512 (3) -0.1588(2)0.0503 (6) H2A 0.3593 0.1111 -0.17350.060* H2B 0.5695 0.0587 -0.20660.060* C3 -0.18001 (19) 0.0476 (6) 0.3446 (5) -0.0573(2)H3A 0.057* 0.4549 -0.1166 -0.1704C4 0.1926 (4) -0.0747(2)-0.1019(2)0.0457 (6) H4A 0.055* 0.1198 -0.1456-0.1150H4B 0.0785 -0.0182-0.11240.055* C5 0.3237 (4) -0.07015 (19) 0.01358 (19) 0.0384 (5) Н5 0.4398 0.046* -0.12650.0194 0.0945 (2) C6 0.1835 (5) -0.1005(2)0.0479 (6) H6A 0.1104 -0.17040.0748 0.057* H6B 0.0693 -0.04510.0937 0.057* C7 0.0470(6) 0.3245(5)-0.1090(2)0.2067(2)H7A 0.4239 -0.17150.2100 0.056* H7B 0.2283 0.2573 0.056* -0.1216C8 0.4612 (4) -0.0048(2)0.23833 (18) 0.0355 (5) H8 0.3577 0.2449 0.043* 0.0551 C9 0.5946 (4) 0.02912 (18) 0.15366 (17) 0.0317 (5) Н9 0.6985 -0.03120.1492 0.038* C10 0.4450 (4) 0.04102 (19) 0.04009 (18) 0.0345 (5) 0.19024 (19) C11 0.7364 (4) 0.1310(2)0.0359 (5) H11A 0.8319 0.1447 0.1396 0.043*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11B	0.6385	0.1939	0.1883	0.043*
C12	0.8806 (4)	0.12266 (18)	0.30152 (19)	0.0348 (5)
H12	0.9922	0.0651	0.3010	0.042*
C13	0.7415 (4)	0.09215 (19)	0.38462 (19)	0.0348 (5)
C14	0.6210 (4)	-0.01731 (19)	0.34639 (18)	0.0361 (5)
C15	0.5234 (5)	-0.0524 (2)	0.44230 (19)	0.0473 (6)
H15A	0.5004	-0.1314	0.4423	0.057*
H15B	0.3827	-0.0158	0.4417	0.057*
C16	0.6988 (5)	-0.0170 (3)	0.5398 (2)	0.0541 (7)
H16A	0.7707	-0.0810	0.5769	0.065*
H16B	0.6297	0.0249	0.5892	0.065*
C17	0.8697 (4)	0.0546 (2)	0.49776 (19)	0.0403 (5)
H17	0.9885	0.0051	0.4858	0.048*
C18	0.5805 (4)	0.1853 (2)	0.3979 (2)	0.0424 (6)
H18A	0.6635	0.2506	0.4224	0.064*
H18B	0.4934	0.1638	0.4492	0.064*
H18C	0.4837	0.1998	0.3304	0.064*
C19	0.2822 (4)	0.1371 (2)	0.0358 (2)	0.0448 (6)
H19A	0.3606	0.2053	0.0347	0.067*
H19B	0.2153	0.1350	0.0977	0.067*
H19C	0.1685	0.1313	-0.0276	0.067*
C20	0.9805 (4)	0.1466 (2)	0.5690 (2)	0.0438 (6)
C21	0.9195 (6)	0.1652 (3)	0.6749 (2)	0.0545 (7)
H21A	1.0151	0.2205	0.7135	0.082*
H21B	0.9364	0.0978	0.7150	0.082*
H21C	0.7678	0.1894	0.6645	0.082*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0810 (15)	0.0551 (12)	0.0400 (9)	-0.0012 (12)	-0.0008 (9)	-0.0079 (9)
O2	0.0463 (10)	0.0431 (9)	0.0411 (9)	-0.0159 (8)	0.0053 (7)	0.0008 (8)
O3	0.0571 (11)	0.0313 (8)	0.0501 (10)	0.0073 (8)	0.0156 (8)	0.0067 (7)
O4	0.0806 (15)	0.0832 (17)	0.0480 (11)	-0.0383 (14)	0.0209 (10)	-0.0205 (10)
C1	0.0452 (13)	0.0503 (14)	0.0374 (12)	-0.0085 (12)	0.0109 (10)	0.0003 (11)
C2	0.0565 (16)	0.0568 (15)	0.0380 (12)	-0.0097 (14)	0.0106 (11)	0.0009 (11)
C3	0.0550 (15)	0.0472 (14)	0.0383 (12)	0.0041 (13)	0.0036 (11)	-0.0058 (11)
C4	0.0495 (14)	0.0386 (13)	0.0471 (13)	-0.0047 (11)	0.0047 (11)	-0.0069 (10)
C5	0.0405 (12)	0.0307 (11)	0.0441 (12)	-0.0020 (10)	0.0087 (10)	-0.0033 (9)
C6	0.0463 (14)	0.0444 (14)	0.0533 (14)	-0.0170 (12)	0.0108 (11)	-0.0031 (12)
C7	0.0540 (15)	0.0400 (13)	0.0491 (14)	-0.0182 (12)	0.0154 (11)	0.0018 (11)
C8	0.0374 (11)	0.0306 (10)	0.0412 (11)	-0.0044 (9)	0.0142 (9)	0.0002 (9)
C9	0.0316 (11)	0.0288 (10)	0.0362 (10)	-0.0017 (9)	0.0103 (8)	-0.0013 (8)
C10	0.0365 (12)	0.0303 (11)	0.0376 (11)	-0.0008 (9)	0.0092 (8)	-0.0005 (9)
C11	0.0372 (11)	0.0335 (11)	0.0393 (11)	-0.0070 (10)	0.0132 (9)	0.0013 (9)
C12	0.0329 (11)	0.0345 (12)	0.0391 (11)	-0.0029 (10)	0.0120 (9)	-0.0006 (9)
C13	0.0374 (11)	0.0324 (10)	0.0369 (11)	-0.0013 (10)	0.0129 (9)	-0.0017 (9)
C14	0.0384 (12)	0.0314 (11)	0.0416 (12)	-0.0031 (10)	0.0155 (9)	0.0008 (9)

C15	0.0569 (15)	0.0443 (13)	0.0441 (13)	-0.0121 (12)	0.0178 (11)	0.0053 (11)
C16	0.0656 (17)	0.0578 (16)	0.0401 (13)	-0.0111 (15)	0.0134 (12)	0.0057 (12)
C17	0.0461 (13)	0.0412 (12)	0.0343 (11)	-0.0013 (11)	0.0098 (9)	-0.0007 (10)
C18	0.0419 (13)	0.0385 (12)	0.0505 (13)	0.0019 (11)	0.0183 (10)	-0.0062 (10)
C19	0.0465 (13)	0.0331 (11)	0.0528 (14)	0.0037 (11)	0.0047 (11)	-0.0009 (11)
C20	0.0483 (13)	0.0439 (13)	0.0397 (12)	-0.0006 (12)	0.0098 (10)	-0.0033 (10)
C21	0.0740 (18)	0.0466 (15)	0.0462 (14)	0.0022 (14)	0.0200 (13)	-0.0081 (12)
Geometric pa	arameters (Å, °)					
O1—C3		1.428 (3)	С9—	C11	1.53	31 (3)
O1—H1		0.88 (5)	С9—	C10	1.50	50 (3)
O2—C12		1.432 (3)	С9—	Н9	0.98	300
O2—H2		0.80 (4)	C10–	C19	1.53	30 (3)
O3—C14		1.440 (3)	C11–	C12	1.51	9 (3)
O3—H3		0.81 (4)	C11–	-H11A	0.97	700
O4—C20		1.200 (3)	C11–	-H11B	0.97	700
C1—C2		1.528 (3)	C12-	C13	1.53	33 (3)
C1—C10		1.538 (3)	C12-	-H12	0.98	300
C1—H1A		0.9700	C13-	C18	1.53	34 (3)
C1—H1B		0.9700	C13–	C14	1.55	52 (3)
C2-C3		1 510 (4)	C13-	-C17	1.56	58 (3)
С2—Н2А		0.9700	C14-	-C15	1.52	27 (3)
C2—H2B		0.9700	C15-	-C16	1.53	36 (4)
C3—C4		1.510 (4)	C15-	-H15A	0.97	700
С3—НЗА		0.9800	C15-	-H15B	0.97	700
C4—C5		1.532 (3)	C16–		1.53	39 (4)
C4—H4A		0.9700	C16–	-H16A	0.97	700
C4—H4B		0.9700	C16–	-H16B	0.97	700
C5—C6		1.515 (3)	C17-	-C20	1.51	3 (4)
C5-C10		1 546 (3)	C17-	-H17	0.98	300
С5—Н5		0.9800	C18-	-H18A	0.96	500
C6—C7		1.521 (4)	C18-	-H18B	0.96	500
С6—Н6А		0.9700	C18-	-H18C	0.96	500
С6—Н6В		0.9700	C19–	-H19A	0.96	500
C7—C8		1 528 (3)	C19–	-H19B	0.96	500
С7—Н7А		0.9700	C19–	-H19C	0.96	500
С7—Н7В		0.9700	C20-	-C21	1.48	39 (4)
C8—C14		1.532 (3)	C21-	-H21A	0.96	500
C8—C9		1 536 (3)	C21-	-H21B	0.96	500
С8—Н8		0.9800	C21–	-H21C	0.96	500
C3—O1—H1		103 (3)	C12–	C11C9	114	.89 (18)
С12—О2—Н2	2	106 (3)	C12-	C11H11A	108	.5
С14—О3—Н3	3	102 (3)	С9—	C11—H11A	108	.5
C2-C1-C10)	113.85 (19)	C12–	C11H11B	108	.5
C2-C1-H1/	A	108.8	C9—	C11—H11B	108	.5
С10—С1—Н1	1A	108.8	H11A	—C11—H11B	107	.5
C2-C1-H1I	В	108.8	02—	C12—C11	106	.34 (17)
С10—С1—Н1	1B	108.8	O2—	C12—C13	113	.46 (19)

H1A—C1—H1B	107.7	C11—C12—C13	111.22 (18)
C3—C2—C1	111.3 (2)	O2—C12—H12	108.6
C3—C2—H2A	109.4	C11—C12—H12	108.6
C1—C2—H2A	109.4	C13—C12—H12	108.6
C3—C2—H2B	109.4	C12—C13—C18	110.96 (19)
C1—C2—H2B	109.4	C12—C13—C14	106.61 (18)
H2A—C2—H2B	108.0	C18—C13—C14	112.93 (19)
O1—C3—C4	112.1 (2)	C12—C13—C17	117.45 (19)
O1—C3—C2	108.8 (2)	C18—C13—C17	109.21 (19)
C4—C3—C2	110.5 (2)	C14—C13—C17	99.21 (18)
O1—C3—H3A	108.5	O3—C14—C15	108.5 (2)
С4—С3—НЗА	108.5	O3—C14—C8	107.79 (18)
С2—С3—НЗА	108.5	C15—C14—C8	117.80 (19)
C3—C4—C5	110.8 (2)	O3—C14—C13	107.04 (18)
C3—C4—H4A	109.5	C15-C14-C13	103.07 (18)
C5—C4—H4A	109.5	C8—C14—C13	112.14 (19)
C3—C4—H4B	109.5	C14—C15—C16	104.3 (2)
C5—C4—H4B	109.5	C14—C15—H15A	110.9
H4A—C4—H4B	108.1	C16—C15—H15A	110.9
C6—C5—C4	112.7 (2)	C14—C15—H15B	110.9
C6—C5—C10	112.1 (2)	C16—C15—H15B	110.9
C4—C5—C10	112.28 (19)	H15A—C15—H15B	108.9
С6—С5—Н5	106.4	C15—C16—C17	107.0 (2)
C4—C5—H5	106.4	C15—C16—H16A	110.3
С10—С5—Н5	106.4	C17—C16—H16A	110.3
C5—C6—C7	111.4 (2)	C15—C16—H16B	110.3
С5—С6—Н6А	109.4	C17—C16—H16B	110.3
С7—С6—Н6А	109.4	H16A—C16—H16B	108.6
С5—С6—Н6В	109.4	C20—C17—C16	117.6 (2)
С7—С6—Н6В	109.4	C20-C17-C13	114.9 (2)
H6A—C6—H6B	108.0	C16—C17—C13	103.5 (2)
C6—C7—C8	111.8 (2)	С20—С17—Н17	106.7
С6—С7—Н7А	109.3	C16—C17—H17	106.7
С8—С7—Н7А	109.3	C13—C17—H17	106.7
С6—С7—Н7В	109.3	C13—C18—H18A	109.5
С8—С7—Н7В	109.3	C13—C18—H18B	109.5
Н7А—С7—Н7В	107.9	H18A—C18—H18B	109.5
C7—C8—C14	112.00 (19)	C13—C18—H18C	109.5
C7—C8—C9	112.19 (19)	H18A—C18—H18C	109.5
C14—C8—C9	108.93 (17)	H18B—C18—H18C	109.5
С7—С8—Н8	107.8	С10—С19—Н19А	109.5
С14—С8—Н8	107.8	C10—C19—H19B	109.5
С9—С8—Н8	107.8	H19A—C19—H19B	109.5
C11—C9—C8	110.64 (17)	С10—С19—Н19С	109.5
C11—C9—C10	113.70 (18)	Н19А—С19—Н19С	109.5
C8—C9—C10	112.37 (17)	H19B—C19—H19C	109.5
С11—С9—Н9	106.5	04	119.9 (3)
С8—С9—Н9	106.5	04—C20—C17	120.5 (2)
С10—С9—Н9	106.5	C21—C20—C17	119.6 (2)

C19—C10—C1	109.6 (2)	C20—C21—H21A		109.5
C19—C10—C5	112.09 (18)	C20—C21—H21B		109.5
C1C10C5	107.21 (19)	H21A—C21—H21B		109.5
C19—C10—C9	111.28 (19)	C20—C21—H21C		109.5
C1—C10—C9	109.66 (17)	H21A—C21—H21C		109.5
C5-C10-C9	106.91 (18)	H21B—C21—H21C		109.5
C10-C1-C2-C3	-55.5 (3)	C11—C12—C13—C18		-66.8 (2)
C1—C2—C3—O1	178.7 (2)	O2-C12-C13-C14		176.39 (17)
C1—C2—C3—C4	55.3 (3)	C11—C12—C13—C14		56.5 (2)
O1—C3—C4—C5	-178.8(2)	O2—C12—C13—C17		-73.5 (3)
C2—C3—C4—C5	-57.3 (3)	C11—C12—C13—C17		166.6 (2)
C3—C4—C5—C6	-173.2 (2)	C7—C8—C14—O3		68.6 (2)
C3—C4—C5—C10	59.0 (3)	C9—C8—C14—O3		-56.1 (2)
C4—C5—C6—C7	173.0 (2)	C7—C8—C14—C15		-54.5 (3)
C10—C5—C6—C7	-59.2 (3)	C9—C8—C14—C15		-179.1 (2)
C5—C6—C7—C8	53.6 (3)	C7—C8—C14—C13		-173.83 (19)
C6—C7—C8—C14	-174.2 (2)	C9—C8—C14—C13		61.5 (2)
C6—C7—C8—C9	-51.3 (3)	C12—C13—C14—O3		55.5 (2)
C7—C8—C9—C11	-177.7(2)	C18-C13-C14-O3		177.62 (18)
C14—C8—C9—C11	-53.1 (2)	C17—C13—C14—O3		-66.9 (2)
C7—C8—C9—C10	54.0 (2)	C12-C13-C14-C15		169.8 (2)
C14—C8—C9—C10	178.61 (19)	C18—C13—C14—C15		-68.1(2)
C2-C1-C10-C19	-67.9 (3)	C17—C13—C14—C15		47.4 (2)
C2-C1-C10-C5	53.9 (3)	C12—C13—C14—C8		-62.5 (2)
C2-C1-C10-C9	169.6 (2)	C18—C13—C14—C8		59.6 (2)
C6—C5—C10—C19	-63.2 (3)	C17—C13—C14—C8		175.10 (18)
C4—C5—C10—C19	64.9 (3)	O3—C14—C15—C16		77.3 (3)
C6—C5—C10—C1	176.6 (2)	C8—C14—C15—C16		-160.0 (2)
C4—C5—C10—C1	-55.4 (2)	C13—C14—C15—C16		-35.9 (3)
C6—C5—C10—C9	59.0 (2)	C14—C15—C16—C17		9.7 (3)
C4—C5—C10—C9	-172.89 (18)	C15—C16—C17—C20		147.8 (2)
C11—C9—C10—C19	-60.2 (2)	C15—C16—C17—C13		19.9 (3)
C8—C9—C10—C19	66.4 (2)	C12—C13—C17—C20		75.4 (3)
C11—C9—C10—C1	61.2 (2)	C18—C13—C17—C20		-52.0 (3)
C8—C9—C10—C1	-172.2 (2)	C14—C13—C17—C20		-170.3 (2)
C11—C9—C10—C5	177.11 (18)	C12—C13—C17—C16		-155.0 (2)
C8—C9—C10—C5	-56.2 (2)	C18—C13—C17—C16		77.6 (3)
C8—C9—C11—C12	51.3 (2)	C14—C13—C17—C16		-40.8 (2)
C10-C9-C11-C12	178.83 (19)	C16—C17—C20—O4		177.7 (3)
C9—C11—C12—O2	-177.92(18)	C13—C17—C20—O4		-60.1 (3)
C9—C11—C12—C13	-53.9 (2)	C16—C17—C20—C21		-0.7 (4)
O2-C12-C13-C18	53.0 (3)	C13—C17—C20—C21		121.5 (3)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H··· A

O1—H1····O2 ⁱⁱ	0.88 (5)	2.05 (6)	2.928 (3)	170 (4)
Symmetry codes: (i) $-x+2$, $y-1/2$, $-z+1$; (ii) $-x+1$,	y-1/2, -z.			

Fig. 1

Fig. 2